

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Adding multi language support

Wagtail and Pipit assumes by default that all content comes in a single language, to add support for multiple languages you need to do the following:

	Install wagtail_localize (pip install wagtail_localize)

	Add "wagtail_localize" and "wagtail_localize.locales" to INSTALLED_APPS

	Update src/pipit/settings/base.py with the following:

WAGTAIL_I18N_ENABLED = True
...
WAGTAIL_CONTENT_LANGUAGES = LANGUAGES = [
 # Any language you whish to support
 ('en', "English"),
 ('sv', "Swedish"),
 ('de', "German"),
]

	Update so you use i18n_patterns for routing

from django.conf.urls.i18n import i18n_patterns

urlpatterns += i18n_patterns(
 re_path(r"", include(wagtail_urls)),
)

This will make sure languages are served as example.com/en/about/ and example.com/sv/om-oss/

	Next step is to provide the frontend with both current language for pages and any translations, open src/main/pages/base_serializer.py and extend the BaseSerializer like this:

...
class BasePageSerializer(serializers.ModelSerializer):
 ...
 language_code = serializers.SerializerMethodField()
 translations = serializers.SerializerMethodField()
 ...

 def get_language_code(self, page):
 return self.locale.language_code

 def get_translations(self, page):
 translations = page.get_translations(inclusive=False)
 return [{
 "title": x.title,
 "url": x.full_url,
 "language_code": x.locale.language_code,
 } for x in translations]

	Done!

Adding sentry to Pipit

It’s important to capture and track errors once your app is deployed, that is why Pipit ships with built in Sentry support, this guide explains how you activate it.

Requirements

Before you get started, make sure you have the following:

	A Sentry account [https://sentry.io/signup/]

	A Sentry project for your application

Guide

Obtaining Sentry information

	In Sentry, open your project settings

	Click on SDK Setup / Client Keys (DSN)

	Copy your DSN key, we’ll use it through this guide

	Open your project general settings and copy your project name (will later be used as SENTRY_PROJECT)

	Open your organization settings, click on general settings and copy organization slug (will later be used as SENTRY_ORG)

	Create a auth token by going to your organization settings / developer settings and create a new internal integration for Circle CI

	Name: CircleCI

	Overview: “Makes it possible to upload project sourcemaps”

	Project: No Access

	Team: No Access

	Release: Admin <– This is very important

	Organization: Read & Write

	Member: No Access

	Save and copy your auth token (will later be used as SENTRY_AUTH_TOKEN)

Setup and test locally

Django

	Update docker/config/python.env

	Change so Django runs in production mode

DJANGO_SETTINGS_MODULE=pipit.settings.prod

	Add your Sentry DSN:

SENTRY_DSN=https://public@sentry.example.com/1

	We are done editing python.env, save the file

	Restart your project

docker-compose stop && docker-compose up

	Open the python repl in docker

docker-compose exec python -c "./manage.py shell"

	Trigger a divison by zero error

>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

	This will trigger and error and send it to sentry

Next.js

	Update frontend/.env

	Add your Sentry DSN:

NEXT_PUBLIC_SENTRY_DSN=https://public@sentry.example.com/1

	Update frontend/pages/[...path].js and make it throw an error

export default function CatchAllPage({ componentName, componentProps }) {
 throw Error("This is a Next.js error");

 const Component = LazyContainers[componentName];
 if (!Component) {
 return <h1>Component {componentName} not found</h1>;
 }
 return <Component {...componentProps} />;
}

	Compile next

npm run build

	Run production server

NODE_ENV=production npm run start npm run start

	Open the website in your browser

	This will trigger the error and send it to Sentry

In production

Django

	Make sure your Django project runs using the stage (pipit.settings.stage) or prod (pipit.settings.prod) settings

	Update your .env file and add the Sentry DSN

SENTRY_DSN=https://public@sentry.example.com/1

	We are done editing .env, save the file

	Restart your application

service uwsgi restart

	Open the python repl

python manage.py shell

	Trigger a divison by zero error

>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

	This will trigger and error and send it to sentry

Next.js

	When it comes to Next.js we need to define the DSN before npm run build runs, which is normally in our CI pipeline. Here we assume you use Circle CI as it’s the default CI service for Pipit.

	Login to Circle CI

	Open your environment variable management in Circle CI by going to My repository / Project Settings / Environment Variables

	Add the following Sentry details that you obtained in the beginning of this guide

	NEXT_PUBLIC_SENTRY_DSN=https://public@sentry.example.com/1

	SENTRY_AUTH_TOKEN=random123

	SENTRY_ORG=MyOrg

	SENTRY_PROJECT=MyOrg-MyProject

	Once this is done, trigger a CI build

	The CI build will

	Bundle the Sentry DSN with your app

	Upload sourcemaps

	Once the build is complete, verify that your source maps are uploaded by

	Open Sentry

	Go to your project settings

	Open Processing / Sourcemaps

	Here you should see a new source map for your project

	Done!

Adding Slack notifications to CircleCI

This boilerplate comes ready made with a CircleCI slack notification using the CircleCI slack orb [https://github.com/CircleCI-Public/slack-orb] (Orb is just a fancy name for a CircleCI application), but you need to create a Slack app and provide access information before you can use it.

Requirements

	You have properly added your repo to Circle CI by following the guide Setting up deployment on CircleCI

	A Slack workspace and the permissions to create apps

	A Slack channel where you want to post your notifications

Guide

	Create a slack app following by following this guide [https://github.com/CircleCI-Public/slack-orb/wiki/Setup]

	Name your app “CircleCI-Bot”

	Create a CircleCI context called “CIRCLECI_BOT”

	Provide your access token to the variable SLACK_ACCESS_TOKEN

	Create a regular environment variable in Circle CI for your channel

	Name the variable SLACK_DEFAULT_CHANNEL and provide the id for your channel (you can get it by right-clicking the channel, click on copy link then fetch the last part, example https://frojd.slack.com/archives/<MY_CANNEL_ID>, <MY_CANNEL_ID> is the value your want)

	Done

Adding wagtail-2fa support

wagtail-2fa [https://github.com/labd/wagtail-2fa] is a great library that works almost out of the box in Pipit, one thing though is that, since we replace the entire frontend, we need to modify the middleware to properly redirect the user for verification.

Guide

	Create a new file at src/nextjs/middleware.py

	Add a extended version of the VerifyUserPermissionsMiddleware that comes with wagtail-2fa, it should look as follows:

import json

from django.http.response import HttpResponseRedirect, JsonResponse
from wagtail_2fa.middleware import VerifyUserPermissionsMiddleware

class NextVerifyUserPermissionsMiddleware(VerifyUserPermissionsMiddleware):
 def process_request(self, request):
 result = super().process_request(request)

 if (
 result
 and isinstance(result, HttpResponseRedirect)
 and "/api/nextjs" in request.path
):
 destination = result.url
 html_path = request.GET.get("html_path", None)
 if html_path is not None:
 first_url = destination.split("?next=")[0]
 destination = f"{first_url}?next=/{html_path}"
 data = {
 "redirect": {
 "destination": destination,
 "is_permanent": False,
 }
 }
 return JsonResponse(data)

 return result

	Update src/pipt/setting/basepy and update MIDDLEWARE list our new middleware (it replaces the regular VerifyUserPermissionsMiddleware middleware)

MIDDLEWARE = [
 ...
 "nextjs.middleware.NextVerifyUserPermissionsMiddleware",
]

	Done!

Backend Developer Guide

In this tutorial we’ll explain how you create a Wagtail page model, how to include a custom field and then finally how to build out the react frontend.

It consists of three parts:

	Getting started

	Creating a page in Wagtail

	Creating a page in the frontend

This document also provides info on the following topics:

	Command reference

	General recommendations

Getting started

The project backend, based on Wagtail and the CMS Wagtail is located in /src, here’s an overview of its content:

├── customdocument # Extends Wagtails Document model
├── customimage # Extends Wagtails Image model
├── customuser # Extends the Django User model
├── main # The primary app where we store models and pages
│ ├── blocks # Put your custom block/stream field blocks here
│ ├── factories # Put your test factories
│ ├── middlewares # Application middlewares
│ ├── migrations # Database migrations
│ ├── mixins.py # Put your model and view mixins here
│ ├── models.py # Put your Django models here
│ ├── pages # Put your Wagtail pages here
│ ├── serializers.py # Put your non-Wagtail page serializers here
│ ├── templates # Put all your templates here
│ ├── tests # Put your tests here
│ └── views # Put your Django and DRF views here
├── manage.py # Django admin tool with addons for loading .env files
├── nextjs # Enables communication between Next.js and Wagtail
├── pipit # This is a bootstrap app that contains settings, translations and routing
│ ├── context_processors.py # Provides templates with values
│ ├── locale # Translation files
│ ├── management # Contains Pipit specific management commands
│ ├── settings # Contains all app settings
│ │ ├── base.py # Put all your mandatory configuration here
│ │ ├── local.py # Put your local configuration here
│ │ ├── prod.py # Put your production configuration here
│ │ ├── stage.py # Put your stage configuration here
│ │ └── test.py # Put your test configuration here
│ ├── templates # Contains Pipit specific templates (like the page scaffolder)
│ ├── test_runner.py # Lets us use pytest as default test runner
│ ├── urls.py # The entrypoint for all routing
│ ├── wagtail_hooks.py # Contains pipit specific Wagtail overrides
│ └── wsgi.py # Default Django wsgi configuration
├── pytest.circleci.ini # Custom Pytest configuration for Circle CI
├── pytest.ini # Pytest configuration
├── requirements # Contains pip requirements
│ ├── base.txt # Put any mandatory requirements here (example wagtail)
│ ├── local.txt # Put local environment requirements here (example django-debug-toolbar)
│ ├── prod.txt # Put production only requirements here (example boto)
│ ├── stage.txt # Put stage only requirements here (example boto)
│ └── test.txt # Put requirements only used in test here (example factory-boy)
├── sitesettings # Contains site customizations
├── utils # Contains global python utility functions

Configuring docker

Make sure you follow the install instructions in the project README.md, in short, it boils down to this:

	Set up env vars: cp docker/config/python.example.env docker/config/python.env

	Include the domain in your hosts file. 127.0.0.1 blog.acme.com.test

Running docker

To run docker, run docker-compose up from the project root (the folder contains a docker-compose.yml file).

This will create the following docker containers:

├── web # Contains the web server we make requests to, it will either direct requests to the python container or our locally running Next.js application
├── python # Contains python and runs the django runserver development server
├── db # Contains PostgreSQL with the PostGIS extension

When all the containers are running, open your browser and navigate to either:

	http://blog.acme.com.test:8081/wt/cms to access the Wagtail admin

	http://blog.acme.com.test:8081/wt/admin to access the Django admin.

/wt is short for /WagTail and is where the Django/Wagtail app is hosted. Requests to anything else (such as / or /my-very-excellent-path) are passed to our Next.js app. The proxy server in the web container does this for us.

Creating a page in Wagtail

Start by generating a new page in Wagtail, we have a management command to simplify the process called new_page.

docker-compose exec python ./manage.py new_page --name=About

This will create the following files:

main
├── factories
│ ├── about_page.py
├── pages
│ ├── about.py
│ ├── about_serializer.py
├── tests
│ ├── test_about_page.py

Files explained

factories/about_page.py

Contains factory-boy [https://factoryboy.readthedocs.io/en/stable/] factories for the page model, we use it to simplify data creation when testing.

pages/about.py

The code that creates the about page Wagtail model.

pages/about_serializer.py

Holds logic for transforming the page model into json data, used by our Next.js frontend.

tests/test_about_page.py

Tests to make sure the data transformation is done correctly. It’s also a good place to put future business logic tests related to the page model.

Adding a new field

Modify main/pages/about.py and include company_name both as a model field and as a content panel, it should look like this:

from django.db import models
from django.utils.translation import gettext_lazy as _
from wagtail.admin.panels import FieldPanel
from wagtail_headless_preview.models import HeadlessPreviewMixin

from .base import BasePage

class AboutPage(HeadlessPreviewMixin, BasePage):
 company_name = models.CharField(
 max_length=250,
 blank=True,
 null=True,
 verbose_name=_("Company name"),
)

 content_panels = BasePage.content_panels + [
 FieldPanel("company_name"),
]

 extra_panels = BasePage.extra_panels
 serializer_class = "main.pages.AboutPageSerializer"

 class Meta:
 verbose_name = _("About")

After adding our field we need to create a new database migration.

docker-compose exec python ./manage.py makemigrations

We also need to run the migration so database changes are applied.

docker-compose exec python ./manage.py migrate

Now login to the Wagtail cms at http://blog.acme.com.test:8081/wt/cms using:

Username: admin
Password: admin

Then choose to create a new page of type “About” by going to your Home Page at http://blog.acme.com.test:8081/wt/cms/pages/3/ and pressing “Add subpage”.

You should see a company_field in the admin.
Name the page “My about page” and in the field “Company Name” write “Acme Inc”, then hit publish.

Writing tests

Modify main/tests/test_about_page.py and include this test case.

def test_that_company_name_are_retuned(self):
 page = AboutPageFactory.create(title="About", company_name="Acme", parent=self.root_page)

 data = page.get_component_data({})
 self.assertEqual(data["component_props"]["company_name"], "Acme")

Now run it.

docker-compose exec python pytest

Oh no - It fails. But that’s all right, that means we need to add company_name to our serializer.

Add field to serializer

Modify main/pages/about_serializer.py

from .base_serializer import BasePageSerializer
from . import AboutPage

class AboutPageSerializer(BasePageSerializer):
 class Meta:
 model = AboutPage
 fields = [
 "company_name",
] + BasePageSerializer.Meta.fields

Now run the tests again.

docker-compose exec python pytest

Tests pass.

Inspecting the field from the api

This is pretty much it on the backend, the serializer is invoked any time a request is made to our page and will transform it to json.

If you are curious on how the data that will be served to the frontend will look like, do the following:

curl 'http://blog.acme.com.test:8081/wt/api/nextjs/v1/page_by_path/?html_path=/my-about-page'
{
 "component_name": "AboutPage",
 "component_props": {
 "company_name": "Acme Inc",
 "title": "My about page",
 ...
 }
}

A couple of things are going on here, the api will retrive the page by path and return enough information for our frontend to know which container to use and what data it should contain.

Creating a page in the frontend

We are now done with the backend and are halfway there, now it’s time to add frontend.
The frontend steps are described in more detail frontend-developer-guide.md, so we won’t go into too much explanation here, but rather what commands and what code to write.

First make sure you have your frontend installed:

cd frontend
npm i

Then create a container component representing our About page by using our cli:

npm run new:container AboutPage

Now modify the newly created container `containers/AboutPage/AboutPage.js” and include our new field in the container component.

import React, { PureComponent } from 'react';

// import i18n from '../../i18n';
import PropTypes from 'prop-types';
import { basePageWrap } from '../BasePage';
import s from './AboutPage.module.css';

class AboutPage extends PureComponent {
 state = {};

 static defaultProps = {
 companyName: '',
 };

 static propTypes = {
 companyName: PropTypes.string,
 };

 render() {
 const { companyName } = this.props;
 return (
 <div className={s['AboutPage']}>
 <p>Company name: {companyName}</p>
 </div>
);
 }
}

export default basePageWrap(AboutPage);

Then, to expose your container to Next.js you also need to put your container in our container register: containers/LazyContainers.js

import dynamic from 'next/dynamic';

export default {
 // Other containers
 ...
 AboutPage: dynamic(() => import('./AboutPage')),
};

The last step is to start your Next.js app (npm run dev) and open http://blog.acme.com.test:8081/my-about-page

You should now have a working page here that displays Acme Inc as a company name.

Command reference

new_page

$./manage.py new_page --name=name

This command scaffolds a Wagtail page and generates a model, serializer, test factory and a set of tests.

Options:

	name: This is the name for your page. Do not include “Page” in the name as it will be included as a suffix. Example “About” will generate the model “AboutPage”.

General recommendations

Put your page models in main/pages

Although a Wagtail page is also a model, we have taken the decision to separate models and page models, because of this they live in their own directory.

Frontend developer guide

Throughout this tutorial, we’ll walk you through the creation of a basic Container

A Container is a collection of multiple Components and is usually where your React state lives.
In a Wagtail context, you can think of it as the visual representation of your Page-model, but
you could also use them to build a form or some other module if you find it suitable.

It consists of three parts:

	Getting started

	Building the required components

	Building your container

This document also provides info regarding the following topics:

	Customizing the scaffolder

	Command reference

	General recommendations

Getting started

The whole frontend of the project is located in /frontend/. Here is an overview of
the contents (Some files omitted for brevity):

├── .storybook # Configuration for storybook
├── api # Contains api libraries for communicating with Wagtail
├── cli # Contains the cli tool for generating new components
├── components # Contains all Components
├── config # Contains various configurations, ex for jest
├── containers # Contains all Containers
├── data # Hold fixtures and factories for storybook and tests
├── i18n # Contains internationalization strings and module for handling those
├── index.css # Entrypoing for global css from styles
├── jest.config.js # Configuration for jest
├── next.config.js # Configuration for Next.js
├── pages # Contains Next.js [pages](https://nextjs.org/docs/basic-features/pages)
├── public # Static files to be served by Next.js
├── setupTests.js # Test suite configurations
├── stories # Default storybook directory
├── styles # Global styling (h1, h2, resets etc)
└── utils # Where you should place your utility functions

To get up and running we first need to install the npm dependencies from the frontend directory:

cd frontend # if not there already
npm i

Next, we start Storybook [https://storybook.js.org/]

npm run storybook

From here, start your preferred browser and navigate to http://localhost:3001. You should see a list of all
components and containers that exist in the application. If not, look in your terminal the window for any
webpack errors and try to resolve those.

You can run any component or container in your browser by clicking on it.
If you do any change in your code the browser will automatically refresh and display your changes.

Building your first Component

For this tutorial, we are going to build a very basic article page and add a button which will give us the
article word count.

The boilerplate already provides a RawHtml component for rendering RichText content, but we will also need to
add a Button component.

Start by scaffolding a component using the CLI:

npm run new Button

This will create the following files:

├── components
│ ├── Button
│ │ ├── Button.data.js
│ │ ├── Button.js
│ │ ├── Button.module.css
│ │ ├── Button.test.js
│ │ ├── Button.stories.js
│ │ └── index.js

Button.data.js

Exporting a JS-object representing the props the component will use in the dev-server,
which will be passed down from higher order components/containers in the actual app

Button.module.css

The stylesheet for the component. It uses CSS Modules [https://github.com/css-modules/css-modules] where class names are scoped locally.

index.js

Decides what the module exports. It defaults to the component Button and you can almost always ignore this file.

Buttons.stories.js

Declares the stories for the Storybook integration [https://storybook.js.org/]. You can ignore this for now.

Button.js

The javascript code for the react component.

Button.test.js

Tests for the component. It will run when you run “npm run test”

Writing the javascript/jsx

Let’s start coding the javascript, modify the Button.js so that it looks like this:

import React from 'react';
import s from './Button.module.css';

const Button = ({ onClick, text }) => (
 <button className={s.Button} onClick={onClick}>
 {text}
 </button>
);

Button.propTypes = {};

Button.defaultProps = {};

export default Button;

This allows us to render a Button which accepts the props onClick and text. In a real-life scenario,
you would also want to specify propTypes [https://reactjs.org/docs/typechecking-with-proptypes.html] and
defaultProps [https://reactjs.org/docs/typechecking-with-proptypes.html#default-prop-values] but that is
outside the scope for this tutorial.

Providing data for storybook

We need to provide the props text and onClick to our component to be able to work with it in the dev server.
Add the following to Button.data.js:

export default {
 'text': 'Button text',
 'onClick': function() {console.log('clicked');}
};

Now if you look at the component in the browser on http://localhost:3001/?path=/story/components-button–with-data [http://localhost:3001/?path=/story/components-button--with-data] you
should see the text “Button text” and if you click it you should see “clicked” in the browser console.

To be able to mock the props like this is very handy since you can develop the whole frontend without
the actual Wagtail implementation in place. It helps you to test the frontend in an isolated context and in a team
setting you can have different members of your team working on the frontend and backend without blocking each other.

Add styling

To style the component, we simply add some css-rules to Button.module.css:

.Button {
 background: #ff4040;
 color: white;
 border: none;
 padding: 10px 15px;
}

Please note that since CSS modules [https://github.com/css-modules/css-modules] are beeing used here, you can only apply styling on your component context.

In a real-life scenario, you would probably want to add your colors to file such ./styles/variables.css and use them
in your stylesheet rather than using hex-colors. But you can work however you like and this boilerplate does not
enforce anything.

Building your first Container

Now we have the components we need for building our container. We will call this container WordCountPage. If we were
building a backend for this as well, it would be represented by a Wagtail-model with the same name.

The received props this container will handle will be a camelCased version of that model’s serialization,
read more about models and serialization in our Backend Developer Guide

From a React-point of view, a container is the same thing as a component. We keep them separated only to make our
code nice and tidy. From our point of view a container differs from a component in the following ways:

	The container handles the state and pass it down to its components

	The container is responsible for the layout of the components it uses, the component styling should not affect the component’s placement

	The container handles javascript bindings and pass it down to its components. i.e. a click handler should be defined in the container and be passed down via props

To build our container, launch the scaffolder again, this time using the flag -c for Container

npm run new:container WordCountPage

Now you should see your newly created container in ./containers/WordCountPage

Building the container javascript/jsx

We now need to import our components and place them in our container:

import React, { PureComponent } from 'react';
import { basePageWrap } from '../BasePage';
import s from './WordCountPage.module.css';

import i18n from '../../i18n';

import Button from '../../components/Button';
import RawHtml from '../../components/RawHtml';

class WordCountPage extends PureComponent {
 state = {};

 static defaultProps = {};

 static propTypes = {};

 handleWordCountClick = () => {
 const quickAndDirtyWordCount = this.props.richText.replace(/<[^>]+>/g, ' ')
 .split(' ').filter(x => x).length;

 alert(`This article contains ${quickAndDirtyWordCount} words`);
 }

 render() {
 const {richText} = this.props;
 return (
 <div className={s.WordCountPage}>
 <div className={[s.Section, s.SectionBody]}>
 <RawHtml html={richText} />
 </div>
 <div className={[s.Section, s.SectionButton]}>
 <Button text={i18n.t('wordcountpage.buttonText')} onClick={this.handleWordCountClick} />
 </div>
 </div>
);
 }
}

export default basePageWrap(WordCountPage);

First we import our components then we declare a click-handler for our button handleWordCountClick, note that we use fat-arrow (=>) functions here
to make sure that the this keyword refers to the WordCountPage instance inside of that function scope. In this
particular case, we just do a very quick and dirty wordcount of the component prop “richText” which will be provided
by Wagtail (from WordCountPage.data.js in the dev-server).

In the render-function, we simply wrap our components in div-elements because we want to put some margins on
them.

Finally we pass along the required props to our components and we are done!

Please note that we are using the function i18n.t for the Button text. This is because our app
will be internationalized. You could simply write the string “Count words” if you only target one language,
but for now, add an English translation for our button text.

Open the file ./i18n/translations/en.json and replace it with this:

{
 "wordcountpage": {
 "buttonText": "Count words"
 }
}

Providing data for the storybook

As with the component, we need to provide storybook data. This should look as your Wagtail Page-serialization.

In our case, we only care about the richText-field. Add to WordCountPage.data.js like:

export default {
 'richText': '<p>paragraph one</p><p>Another paragraph</p>'
};

Add styling

When styling the container-level, we mostly do the layout. Add some margins:

.WordCountPage {
 max-width: 600px;
}

.Section {
 margin-bottom: 20px;
}

Now you should have a working page Container on http://localhost:3001/WordCountPage.

Customizing the scaffolder

@todo

Command reference

@todo

General recommendations

@todo

Getting Started Guide

This is a brief guide intended to get you up and running
in just a few minutes

Requirements

Make sure you have the following requirement:

	Docker Compose [https://docs.docker.com/compose/]

	cookiecutter [https://github.com/audreyr/cookiecutter]

	Node [https://nodejs.org/en/] (v12 or later, the latest LTS version is recommended and also specified in the .nvmrc file)

Initialize Project

Run the cookiecutter and fill out the questions asked by the interface:

cookiecutter https://github.com/Frojd/Wagtail-Pipit.git

Cookiecutter will ask for credentials which you may not have or need:
Don’t worry about it and just leave the defaults for now.
You can update or remove those later.

It could look like this:

project_name [Company-Project]: Acme-Blog
project_slug [acme_blog]:
domain_prod [example.com]: blog.acme.com
domain_stage [stage.blog.acme.com]: stage-blog.acme.com
ssh_host_prod [blog.acme.com]:
ssh_host_stage [stage-blog.acme.com]:
db_name_prod [acme_blog]:
db_name_stage [acme_blog]:
docker_web_port [8081]:
docker_web_ssl_port [8083]:
docker_db_port [8083]:
nextjs_port [3000]:
storybook_port [3001]:
docker_vscode_debug_port [5678]:
version [0.1.0]:
Select software_license:
1 - proprietary
2 - MIT
Choose from 1, 2 [1]: 1

Setting up the frontend

Unlike most Django stacks, our frontend is rendered via React rather than
Django Template Language. So we also need to make sure that
Webpack is running, go to the ./frontend folder in your newly created project
(named as project_name from the wizard) and get the frontend up and running:

cd Acme-Blog/frontend
npm i
npm run dev

> frontend_nextjs@0.1.0 dev /Users/roger/www/Acme-Blog/frontend
> next dev -p 3000

ready - started server on 0.0.0.0:3000, url: http://localhost:3000
info - Loaded env from /Users/roger/www/Acme-Blog/frontend/.env

npm run dev is a Next.js command that will start a frontend development server that supports both hot reloading and error reporting,
it will later on communicate against our Wagtail api.
You can read more about npm run dev in the Next.js documentation [https://nextjs.org/docs/api-reference/cli#development]

Read more about the frontend stack in our
frontend developer workflow guide.

Booting up Docker

Are you on Linux?
Add the following in your docker-compose.yml for the web container to get the reverse proxy working. You also need to use Docker 20.04+

services:
 web:
 ...
 extra_hosts:
 - "host.docker.internal:host-gateway"

The Django application will be served through Docker. To start it, run the following from the project root:

docker-compose up

When Docker is finished, your app should be up and running on the docker_web_port specified in the wizard (http://localhost:8081 in our example).
This is actually the frontend app, beeing loaded through a Nginx proxy, fetching data from our Wagtail api.

The Django app is hosted under http://localhost:8081/wt/ and you can log in to the Wagtail-admin (http://localhost:8081/wt/cms) or the
Django-admin (http://localhost:8081/wt/admin) using the following credentials:

username: admin
password: admin

If you are not used to working in a docker environment here are a few tip
to get you started:

You want to run management commands from within the docker environment

For convenience we are providing a script for that, so instead of running the usual
python manage.py from the project root, you can run ./scripts/manage.sh. i.e.:

./scripts/manage.sh makemigrations
./scripts/manage.sh migrate

If you rather want to work within a shell in the docker container, you can do so:

docker-compose exec python bash

Installing requirements need to happen within the docker environment

Like for management commands, we provide a script to for this. When adding requirement you can install them like this:

./scripts/pip.sh install -r requirements/local.txt

If you prefer, you can start a shell in the container and go on as you are used to:

docker-compose exec python bash

Other recommendations

Git hooks, GitFlow and semantic versioning

We at Fröjd like GitFlow [https://github.com/petervanderdoes/gitflow-avh] and semantic versioning [https://semver.org/] a lot.

While this is optional, we do provide some nice git hooks and have tailored the bundled CI-chain for this.
Therefore, we recommend you to install git flow [https://github.com/petervanderdoes/gitflow-avh] set it up like this:

$ git flow init
Initialized empty Git repository in /Users/roger/www/Acme-Blog/.git/
No branches exist yet. Base branches must be created now.
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Bugfix branches? [bugfix/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? [] v
Hooks and filters directory? [/Users/roger/www/Acme-Blog/.git/hooks]

When git flow is initialized you can set up the git-hooks like this from the project root directory:

ln -nfs $PWD/.githooks/bump-version.sh .git/hooks/post-flow-release-start
ln -nfs $PWD/.githooks/bump-version.sh .git/hooks/post-flow-hotfix-start
ln -nfs $PWD/.githooks/pre-push.sh .git/hooks/pre-push
ln -nfs $PWD/.githooks/pre-commit.sh .git/hooks/pre-commit

This will:

	Automatically keep the version-numbers in your source files in sync with the current release version

	Run the Black [https://black.readthedocs.io/en/stable/] formatter on commit

	Run your test suite locally before pushing your commits, so that you catch errors before your boss see them failing on the CI :)

Set up local SSL certificate

For us to support local certificates you need to install a tool called mkcert [https://github.com/FiloSottile/mkcert] a long with a root certificate.

	Install mkcert

	Add root cert mkcert -install

	Create a cert for your project mkcert --cert-file docker/files/certs/cert.pem --key-file docker/files/certs/cert-key.pem blog.acme.com.test

	Drop #mkcert from docker/files/config/nginx.conf to activate SSL

sed -i.bak 's/\#mkcert\ //g' docker/files/config/nginx.conf && rm -f docker/files/config/nginx.conf.bak

	Remove your docker container web (docker-compose stop && docker-compose rm -f web)

	Restart docker

…there is also a alternative way by running ./scripts/enable_ssl.sh

Troubleshooting

If you have any problem getting your project up and running.
Please let us know by filing an issue and we will help you out.

Reported issues gives us valuable insights on how we can improve the stack and documentation.

Handling CSRF Tokens in Pipit

There are several ways of working with CSRF tokens, you can either:

	Set a cookie containing the CSRF on your backend and then pick it up on the clientside using js

	Pass the csrf token to your frontend using a API (this guide will cover this)

Requirements

	An understanding of CSRF (Cross-Site Request Forgery) [https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html]

Guide

In this guide we will generate a CSRF token in a page serializer and pass that along to a React container component, that will pass it to a form component, that will use to to send data to a fictional api.

	First start with returning a CSRF token from a page serializer

src/main/pages/home_serializer.py
from django.middleware import csrf as csrf_middleware

from .base_serializer import BasePageSerializer
from . import HomePage

class HomeSerializer(BasePageSerializer):
 csrf_token = serializers.SerializerMethodField()

 def get_csrf_token(self, _obj):
 request = self.context.get("request")
 return csrf_middleware.get_token(request)

 class Meta:
 model = HomePage
 fields = ['csrf_token'] + BasePageSerializer.Meta.fields

	Pick up the CSRF token in your HomePage container component and pass it to your ContactForm component

// containers/HomePage/HomePage.js
import React from 'react';
import PropTypes from 'prop-types';
import { basePageWrap } from '../BasePage';
import Hero from '../../components/Hero';
import ContactForm from '../../components/ContactForm';
import s from './HomePage.module.css';

const HomePage = ({ title, csrfToken }) => {
 return (
 <div className={s.Container}>
 <Hero title={title} />
 <ContactForm csrfToken={csrfToken} />
 </div>
);
};

HomePage.defaultProps = {
 title: '',
};

HomePage.propTypes = {
 title: PropTypes.string.isRequired,
};

export default basePageWrap(HomePage);

	Finally create a ContactForm component that will communicate with your API pass the CSRF token in the request header

// components/ContactForm/ContactForm.js
import React from 'react';

class ContactForm extends React.Component {
 state = {
 name: '',
 }

 handleChange = (event) => {
 this.setState({value: event.target.value});
 }

 handleSubmit = (event) => {
 event.preventDefault();

 const { csrfToken } = this.props;

 fetch('https://example.test/api/contact', {
 body: JSON.stringify({ name: this.state.name }),
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'X-CSRFToken': csrfToken,
 },
 }).then(resp => console.log(resp));
 }

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label>
 Name:
 <input type="text" value={this.state.name} onChange={this.handleChange} />
 </label>
 <input type="submit" value="Submit" />
 </form>
);
 }
}

export default ContactForm;

	Done!

TIP: If you want have your CSRF token globally accessible on the frontend, why not use a react context?

Provisioning webserver

In this guide we’ll explain how to use the included provisioning script to install a Pipit generated application on a server.

Requirements (webserver, aka ansible host)

The server should have these applications/packages installed:

	Linux (Ubuntu 20.04+ is preffered)

	Nginx

	uWSGI

	Python 3.10+

	PostgreSQL 12+

	PostGIS for PostgreSQL

	GDAL (required for PostGIS)

	Node 12+

	PM2 [https://pm2.io/]

	psycopg2-binary [https://pypi.org/project/psycopg2-binary/] (this is required for the provision script that will create db and users)

Linux should have these users (with passwordless login using RSA keys):

	“root” - Used when provisioning web server

	“deploy” - Used for deployment

Configuration:

	Systemd jobs for Nginx, uWSGI and pm2

	Nginx configuration are stored at /mnt/persist/nginx/conf.d/*

	Node configuration are stored at /mnt/persist/nodejs/*

	Your web applications are stored at /mnt/persist/www/*

	The root user can access the psql shell without password

Requirements (your computer, aka control node)

	A fully generated Pipit project

	Rsync installed

	A MacOS or Linux computer (Ansible does not support Windows [http://blog.rolpdog.com/2020/03/why-no-ansible-controller-for-windows.html])

	Access to the webserver over ssh with both the “root” and “deploy” user

Guide

	Begin by going to the deploy dir in your project and install Ansible [https://www.ansible.com/]

>>> cd deploy
>>> python3 -m venv venv
>>> . venv/bin/activate
>>> pip install -r requirements.txt

	Make sure you can connect to the server by pinging it

>>> ansible -i stages/stage.yml webservers -m ping
stage1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}

	After this, we install Ansistrano [https://ansistrano.com/]:

>>> ansible-galaxy install -r requirements.yml

	Now that we have everything installed, lets run the provisioning:

	For stage

>>> ansible-playbook provision.yml -i stages/stage.yml

	For prod

>>> ansible-playbook provision.yml -i stages/prod.yml

	This will script will run the necessary steps to make sure your application is ready to be deployed

	The next step is to run a deploy to sent our application to the server and start it

	For stage

>>> ansible-playbook deploy.yml -i stages/stage.yml

	For prod

>>> ansible-playbook deploy.yml -i stages/prod.yml

	Done!

Troubleshooting

	I’m having issues running the initial migrations: Permission denied to create extension "postgis" HINT: Must be superuser to create this extension

	Connect to your server as root/superuser

	Run psql on the server

	Open your db \c mydb

	Run CREATE EXTENSION IF NOT EXISTS postgis

	I’m getting the error Failed to import the required Python library when running Creates postgres database when running playbook in --check mode

	It’s a known issue, because of this check mode is not supported for the provision playbook

Note

	This script does not perform server provisioning, only application provisioning. But there are plenty of guides on how to do this [https://clouding.io/hc/en-us/articles/360013788600-How-to-provision-Ubuntu-server-with-Ansible-scripts].

Publish storybook

Pipit includes Storybook out of the box as a development tool, but if you want to publish your Storybook to enable others to view your work in progress, follow this guide.

Requirements

	You have performed application provisioning on both your stage and production environments by running the ansible playbook provision.yml

Guide

	Make sure npm run build-storybook runs in your .circleci/config.yml (this is enabled out of the box).

	Open your Nginx configuration on stage and/or prod environment and uncomment this code (replace my_project with your project name):

vim /mnt/persist/etc/nginx/my_project.conf

location /storybook/ {
auth_basic "Restricted";
auth_basic_user_file /mnt/persist/nginx/conf.d/.htpasswd;
alias /mnt/persist/www/my_project/current/src/frontend/storybook-static/;
}

	Reload nginx

service nginx reload

	Now open your domain and to go /storybook/, here you should find your published storybook

	Done!

Running python locally

Foreword

Lets start with us saying that docker is a great tool. But in all this greatness there is a performance penalty. In some cases the penalty is big enough that you want to eject docker and use a local python interpreter instead - this tutorial will show you how.

Setup

Begin by adding our included docker-compose override, it will change the PYTHON_HOST environment variable in docker-compose.yml for the container web so we use a local running python interpreter instead of the docker version. This override will also replace the python container with a no-op container.

cp docker-compose.override.local.yml docker-compose.override.yml

If you have a existing web container, remove it docker-compose rm web

Create a custom .env file for your local db instance

touch src/.env.local

And supply your env configuration, you can usually just copy paste the values you would have from /docker/config/python.env and only replace DATABASE_HOST.

DJANGO_SETTINGS_MODULE=pipit.settings.local
ALLOWED_HOSTS=*
INTERNAL_IPS=0.0.0.0
SECRET_KEY=generatesecretkeyhere
MEDIA_PATH=./media
STATIC_PATH=./static
DATABASE_USER=postgres
DATABASE_PASSWORD=postgres
DATABASE_NAME=postgres
DATABASE_HOST=localhost
DATABASE_PORT=8083

Setup virtualenv (but please note that there are many different ways of doing package management in python (pyenv, poetry etc), if you have a preffered way of doing things - do it :)

cd src
python3 -m venv venv
source venv/bin/activate

Install local packages. We use test.txt here because it include both requirements for running the app with dev tools and testing requirements.

pip install -r requirements/test.txt

Tip: If you are having issues installing psycopg2 because your are lacking postgres, replace psycopg2 with psycopg2-binary

Running website

Start docker (without the python container)

docker-compose up db web

And then finally start your python server

cd src
python manage.py collectstatic
python manage.py runserver 8000

Now open http://blog.acme.com.test:8081/wt/cms in your favorite browser and you should see the Wagtail CMS login page.

Running tests

Because we use a different set of configuration while connecting to the db, we keep a custom pytest config around for running python locally.

cd src
pytest -c pytest.local.ini

Scaffolding

In Pipit we include a couple of commands to make it easier for you to create the neccessary Wagtail pages and frontend components.

Creating a Wagtail page

This command will automatically geneate a page along with a corresponding serializer and test. To run it, do this:

./scripts/manage.sh new_page --name=Article

	The following files will be created for you with some default code in them:

	src/main/pages/article.py

	src/main/pages/article_serializer.py

	src/main/tests/test_article_page.py

	src/main/factories/article_page.py

	After running the scaffold create migrations: ./scripts/manage.py makemigrations

	And finally migrate your migrations: ./scripts/manage.py migrate

Creating a container component

This command will create a frontend component of the container type (container, something that itself consist of other components, usually a page):

cd frontend
npm run new:container NewsPage

	This will create the following page:

	frontend/containers/WordCountPage

Creating a component

This command will create a frontend component (something reusable):

cd frontend
npm run new Button

	This will create the following component:

	frontend/components/Button

Serving custom content type data through Next.js

A common scenario is that you want to serve something that is not html through Next.js, this is how you do it.

What you do is that you return a object called customResponse with the keys contentType and body.
Next.js will unpack the data and build a response based on it.

def serve(self, request: HttpRequest, *args, **kwargs) -> HttpResponse:
 response_cls = JsonResponse if isinstance(request, Request) else Response

 return response_cls({
 "customResponse": {
 "contentType": "application/xml",
 "body": '<?xml version="1.0" encoding="UTF-8"?><root>1</root>',
 }
 })

If you want to return binary data you can use the body64 key, in this example we will return a gif.

def serve(self, request: HttpRequest, *args, **kwargs) -> HttpResponse:
 response_cls = JsonResponse if isinstance(request, Request) else Response

 return response_cls({
 "customResponse": {
 "contentType": "image/gif",
 "body64": "R0lGODdhAQABAPAAAP8AAAAAACwAAAAAAQABAAACAkQBADs=",
 }
 })

Setting up deployment on CircleCI

In this tutorial we’ll explain how to successfully set up a Continious Integration (CI) and Continuous Deployment (CD) pipeline using Circle CI.

Requirements

	An understanding of what CI [https://www.atlassian.com/continuous-delivery/continuous-integration] is

	An understanding of what CD [https://www.atlassian.com/continuous-delivery/continuous-deployment] is

	An understanding of what Ansible [https://www.ansible.com/overview/how-ansible-works] is

	An understanding of what a Ansible Playbook [https://docs.ansible.com/ansible/latest/user_guide/playbooks.html] is

	An understanding of what Public Key Authentication [https://www.ssh.com/ssh/public-key-authentication] are

	A fully generated Pipit project

	Access to two separate environments for stage and production

	You have performed application provisioning on both your stage and production environments by running the ansible playbook provision.yml

	A Circle CI account

Guide

	Start by generating a new ssh-key (without a passphrase) for your stage environment

	Run: ssh-keygen -t ed25519 -C "ci@frojd.se"

	When the “Enter file in which to save the key” prompt pops up, select a name for your key. I recommend naming it after the environment you wish to connect, such as stage.example.com, to makes it easier to identify which key belong where.

	On the next prompt (”Enter passphrase”), press Enter

	On the next prompt (”Enter passphrase again”), press Enter

	You now have two files:

	stage.myserver.com (your private key)

	stage.myserver.com.pub (your public key)

	Now repeat the steps above and generate a new set of key for production by following the same instructions we did for stage but with your production domain

	Now that you have generated ssh keys for both stage and prod it is time to add your private key to Circle CI, so Circle CI can access your servers

	Login to Circle CI [https://circleci.com/] and add your project repo

	Open your project settings in Circle CI by going to My repository / Project Settings / SSH Keys and then scoll down to “Additional SSH Keys”)

	Press “Add an SSH Key”

	In the field “Hostname” supply the host in you wish to connect to (in this case stage.example.com and example.com)

	In the second field called “Private key”, copy and paste the content within your private key here

	(For Mac) Copy file content to clipboard: cat stage.myserver.com | pbcopy

	Press Add SSH Key to save and finialize the CI configuration

	Send the public part of your key (stage.myserver.com.pub) to your hosting partner

	Or if you manage the server yourself, add it to ~/.ssh/authorized_users on your server

	When this is done, run your Circle CI build by either doing a new commit to your repository or trigger a build from the Circle CI interface

	Done!

CI configuration

	By default pushes to the master and main branches are ignored

	Pushes to the develop branch triggers a build, tests and deploy with the stage deployment

	Pushing a feature branch will trigger a build and run tests, but will not trigger deployment

	Pushing a tag prefixed with ‘v’ triggers a build, test and deploy with the production deployment

	Changes to any of the files in .ciignore will not trigger a build

Note

	Once you have verified that your build works as expected, for security sake, delete the keys from your local machine

Datasync between environments

	./scripts/prod_to_local.sh - sync prod database to local database

	./scripts/stage_to_local.sh - sync stage database to local database

	./scripts/example_prod_to_stage.sh - a starting point for a script syncing prod data to stage.

	./scripts/restore_db.sh - Reset database

	./scripts/store_db.sh - Create database dump

Using static site generation

One nice feature of Next.js is that it can both be used for Server-Side Rendering (SSR) and Static Site Generation (SSG), Pipit uses SSR by default, but also supports SSG. This guide will show you how.

Requirements

Make sure you read through our Getting started guide and have everything installed.

Reconfiguring

Open the frontend directory

cd frontend

Now proceed to disable SSR functions and enable SSG functions

	In frontend/pages/[...path].js, comment out getServerSideProps and un-comment getStaticProps and getStaticPaths

	In frontend/pages/_preview, uncomment getStaticProps and comment out getServerSideProps

	In frontend/pages/index.js, uncomment the line below // For SSG and comment out the line after // For SSR

Exporting

Then run a build

npm run build

After that, create a html export [https://nextjs.org/docs/advanced-features/static-html-export].

npm run export

This will create a folder called /frontend/out that will contain your website exported as static html files.

Continue by opening the dir and run a webserver as its root

cd out
python3 -m http.server 8000

Finally open http://localhost:8000 in your favorite browser and you should see your website.

Working with Wagtails routable pages

Wagtail has a feature called routable pages which lets you serve different type of content from one page, it does this by letting you add custom routes onto a page.

We won’t go into detail on how routable pages work since the Wagtail documentation on routable pages [https://docs.wagtail.io/en/v2.11.1/reference/contrib/routablepage.html] already does a excellent job, this guide will rather show you how to implement them in Pipit.

Guide

	Declare a model that adds RoutablePageMixin and extends from our BasePage model. We do this by generating a new page python manage.py new_page --name=ProductList and then eidting it so it includes the RoutablePageMixin.

from rest_framework.request import Request
from rest_framework.response import Response
from wagtail.contrib.routable_page.models import RoutablePageMixin, route
from wagtail_headless_preview.models import HeadlessPreviewMixin

from main.base import BasePage

class ProductListPage(HeadlessPreviewMixin, RoutablePageMixin, BasePage):
 pass

	Proceed to include a “index” route to our page.

class ProductListPage(HeadlessPreviewMixin, RoutablePageMixin, BasePage):

 @route(r'^$')
 def index_route(self, request, *args, **kwargs):
 data = self.get_component_data({"request": request})
 # Decide response depending if called through api or wagtail routing
 response_cls = Response if isinstance(request, Request) else JsonResponse
 return response_cls(data)

	Now comes the interesting bit, here we declare a subroute that will pick up a “product” and serve if on the page using a custom serializer called ProductListDetailSerializer.

We also instruct the view to use a new react component called ProductListDetail by setting a custom component_name in get_component_data.

main/pages/productlist.py
from django.shortcuts import get_object_or_404
...
from example_app.models import Product # You will need to create this

...

class ProductListPage(HeadlessPreviewMixin, RoutablePageMixin, BasePage):
 ...

 @route(r'^products/(?P<slug>.+)/$')
 def product_detail(self, request, slug=None, *args, **kwargs):
 product = get_object_or_404(Product, slug=slug)

 context = {"request": request, "product": product}
 data = self.get_component_data(
 context=context,
 component_name="ProductListDetail",
 serializer_cls="main.pages.ProductListDetailSerializer",
)

 # Decide response depending if called through api or wagtail routing
 response_cls = Response if isinstance(request, Request) else JsonResponse
 return response_cls(data)

	In the example below we are referring to a new serializer called ProductListDetailSerializer in main/pages/productlist_serializer.py, the serializer extends on ProductListPageSerializer should look something like this.

main/pages/productlist_serializer.py
...
from example_app.serializer import ProductSerializer # You will need to create this
...

class ProductListDetailSerializer(ProductListPageSerializer):
 product = serializers.SerializerMethodField()

 class Meta:
 model = ProductListPage
 fields = ProductListPageSerializer.Meta.fields + [
 "product",
]

 def get_product(self, _page):
 product = self.context.get("product")
 return ProductSerializer(product).data

	With this we have created a page, that will pick up and serve product a custom model on the route /my-page/products/x1000/ through another serializer.

Full example

main/pages/productlist.py
from django.shortcuts import get_object_or_404
from rest_framework import serializers
from rest_framework.request import Request
from rest_framework.response import Response
from wagtail.contrib.routable_page.models import RoutablePageMixin, route
from wagtail_headless_preview.models import HeadlessPreviewMixin

from example_app.models import Product
from .base import BasePage

class ProductListPage(HeadlessPreviewMixin, RoutablePageMixin, BasePage):
 @route(r'^$')
 def index_route(self, request, *args, **kwargs):
 data = self.get_component_data({"request": request})
 response_cls = Response if isinstance(request, Request) else JsonResponse
 return response_cls(data)

 @route(r'^products/(?P<slug>.+)/$')
 def product_detail(self, request, slug=None, *args, **kwargs):
 product = get_object_or_404(Product, slug=slug)

 data = self.get_component_data(
 context={"request": request, "product": product},
 component_name="ProductListDetail",
 serializer_cls="main.pages.ProductListDetailSerializer",
)

 response_cls = Response if isinstance(request, Request) else JsonResponse
 return response_cls(data)

main/pages/product_list_serializer.py
from .base_serializer import BasePageSerializer
from . import ProductListPage
from example_app.serializer import ProductSerializer

class ProductListPageSerializer(BasePageSerializer):
 class Meta:
 model = ProductListPage
 fields = BasePageSerializer.Meta.fields

class ProductListDetailSerializer(ProductListPageSerializer):
 product = serializers.SerializerMethodField()

 class Meta:
 model = ProductListPage
 fields = ProductListPageSerializer.Meta.fields + [
 "product",
]

 def get_product(self, _page):
 product = self.context["product"]
 return ProductSerializer(product).data

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

